

cbpro2

cbpro2 is a python client library to interact with coinbase pro.

Documentation

	1. Public Client

	2. Authenticated Client

	3. Authentication

	4. Order Book

	5. Websocket Client

1. Public Client

Contents

	Public Client

	Public Client

Public Client

	
class cbpro.public_client.PublicClient(api_url='https://api.pro.coinbase.com', timeout=30)

	cbpro public client API.

All requests default to the product_id specified at object
creation if not otherwise specified.

	
url

	API URL. Defaults to cbpro API.

	Type

	Optional[str]

	
get_currencies()

	List known currencies.

	Returns

	
	List of currencies. Example::

	
	[{

	“id”: “BTC”,
“name”: “Bitcoin”,
“min_size”: “0.00000001”

	}, {

	“id”: “USD”,
“name”: “United States Dollar”,
“min_size”: “0.01000000”

}]

	Return type

	list

	
get_product_24hr_stats(product_id)

	Get 24 hr stats for the product.

	Parameters

	product_id (str) – Product

	Returns

	
	24 hour stats. Volume is in base currency units.

	
	Open, high, low are in quote currency units. Example::

	
	{

	“open”: “34.19000000”,
“high”: “95.70000000”,
“low”: “7.06000000”,
“volume”: “2.41000000”

}

	Return type

	dict

	
get_product_historic_rates(product_id, start=None, end=None, granularity=None)

	Historic rates for a product.

Rates are returned in grouped buckets based on requested
granularity. If start, end, and granularity aren’t provided,
the exchange will assume some (currently unknown) default values.

Historical rate data may be incomplete. No data is published for
intervals where there are no ticks.

Caution: Historical rates should not be polled frequently.
If you need real-time information, use the trade and book
endpoints along with the websocket feed.

The maximum number of data points for a single request is 200
candles. If your selection of start/end time and granularity
will result in more than 200 data points, your request will be
rejected. If you wish to retrieve fine granularity data over a
larger time range, you will need to make multiple requests with
new start/end ranges.

	Parameters

	
	product_id (str) – Product

	start (Optional[str]) – Start time in ISO 8601

	end (Optional[str]) – End time in ISO 8601

	granularity (Optional[int]) – Desired time slice in seconds

	Returns

	
	Historic candle data. Example:

	
	[

	[time, low, high, open, close, volume],
[1415398768, 0.32, 4.2, 0.35, 4.2, 12.3],
…

]

	Return type

	list

	
get_product_order_book(product_id, level=1)

	Get a list of open orders for a product.

The amount of detail shown can be customized with the level
parameter:
* 1: Only the best bid and ask
* 2: Top 50 bids and asks (aggregated)
* 3: Full order book (non aggregated)

Level 1 and Level 2 are recommended for polling. For the most
up-to-date data, consider using the websocket stream.

Caution: Level 3 is only recommended for users wishing to
maintain a full real-time order book using the websocket
stream. Abuse of Level 3 via polling will cause your access to
be limited or blocked.

	Parameters

	
	product_id (str) – Product

	level (Optional[int]) – Order book level (1, 2, or 3).
Default is 1.

	Returns

	
	Order book. Example for level 1::

	
	{

	“sequence”: “3”,
“bids”: [

[price, size, num-orders],

],
“asks”: [

[price, size, num-orders],

]

}

	Return type

	dict

	
get_product_ticker(product_id)

	Snapshot about the last trade (tick), best bid/ask and 24h volume.

Caution: Polling is discouraged in favor of connecting via
the websocket stream and listening for match messages.

	Parameters

	product_id (str) – Product

	Returns

	
	Ticker info. Example::

	
	{

	“trade_id”: 4729088,
“price”: “333.99”,
“size”: “0.193”,
“bid”: “333.98”,
“ask”: “333.99”,
“volume”: “5957.11914015”,
“time”: “2015-11-14T20:46:03.511254Z”

}

	Return type

	dict

	
get_product_trades(product_id, before='', after='', limit=None, result=None)

	List the latest trades for a product.

This method returns a generator which may make multiple HTTP requests
while iterating through it.

	Parameters

	
	product_id (str) – Product

	before (Optional[str]) – start time in ISO 8601

	after (Optional[str]) – end time in ISO 8601

	limit (Optional[int]) – the desired number of trades (can be more than 100,
automatically paginated)

	results (Optional[list]) – list of results that is used for the pagination

	Returns

	
	Latest trades. Example::

	
	[{

	“time”: “2014-11-07T22:19:28.578544Z”,
“trade_id”: 74,
“price”: “10.00000000”,
“size”: “0.01000000”,
“side”: “buy”

	}, {

	“time”: “2014-11-07T01:08:43.642366Z”,
“trade_id”: 73,
“price”: “100.00000000”,
“size”: “0.01000000”,
“side”: “sell”

	Return type

	list

}]

	
get_products()

	Get a list of available currency pairs for trading.

	Returns

	
	Info about all currency pairs. Example::

	
	[

	
	{

	“id”: “BTC-USD”,
“display_name”: “BTC/USD”,
“base_currency”: “BTC”,
“quote_currency”: “USD”,
“base_min_size”: “0.01”,
“base_max_size”: “10000.00”,
“quote_increment”: “0.01”

}

]

	Return type

	list

	
get_time()

	Get the API server time.

	Returns

	
	Server time in ISO and epoch format (decimal seconds

	
	since Unix epoch). Example::

	
	{

	“iso”: “2015-01-07T23:47:25.201Z”,
“epoch”: 1420674445.201

}

	Return type

	dict

2. Authenticated Client

Contents

	Authenticated Client

	Authenticated Client

Authenticated Client

cbpro/AuthenticatedClient.py
Daniel Paquin

For authenticated requests to the Coinbase exchange

	
class cbpro.authenticated_client.AuthenticatedClient(key, b64secret, passphrase, api_url='https://api.pro.coinbase.com')

	Provides access to Private Endpoints on the cbpro API.

All requests default to the live api_url: ‘https://api.pro.coinbase.com’.
To test your application using the sandbox modify the api_url.

	
url

	The api url for this client instance to use.

	Type

	str

	
auth

	Custom authentication handler for each request.

	Type

	CBProAuth

	
session

	Persistent HTTP connection object.

	Type

	requests.Session

	
buy(product_id, order_type, **kwargs)

	Place a buy order.

This is included to maintain backwards compatibility with older versions
of cbpro-Python. For maximum support from docstrings and function
signatures see the order type-specific functions place_limit_order,
place_market_order, and place_stop_order.

	Parameters

	
	product_id (str) – Product to order (eg. ‘BTC-USD’)

	order_type (str) – Order type (‘limit’, ‘market’, or ‘stop’)

	**kwargs – Additional arguments can be specified for different order
types.

	Returns

	Order details. See place_order for example.

	Return type

	dict

	
cancel_all(product_id=None)

	With best effort, cancel all open orders.

	Parameters

	product_id (Optional[str]) – Only cancel orders for this
product_id

	Returns

	
	A list of ids of the canceled orders. Example::

	
	[

	“144c6f8e-713f-4682-8435-5280fbe8b2b4”,
“debe4907-95dc-442f-af3b-cec12f42ebda”,
“cf7aceee-7b08-4227-a76c-3858144323ab”,
“dfc5ae27-cadb-4c0c-beef-8994936fde8a”,
“34fecfbf-de33-4273-b2c6-baf8e8948be4”

]

	Return type

	list

	
cancel_order(order_id)

	Cancel a previously placed order.

If the order had no matches during its lifetime its record may
be purged. This means the order details will not be available
with get_order(order_id). If the order could not be canceled
(already filled or previously canceled, etc), then an error
response will indicate the reason in the message field.

Caution: The order id is the server-assigned order id and
not the optional client_oid.

	Parameters

	order_id (str) – The order_id of the order you want to cancel

	Returns

	
	Containing the order_id of cancelled order. Example::

	[“c5ab5eae-76be-480e-8961-00792dc7e138”]

	Return type

	list

	
close_position(repay_only)

	Close position.

	Parameters

	repay_only (bool) – Undocumented by cbpro.

	Returns

	Undocumented

	
coinbase_deposit(amount, currency, coinbase_account_id)

	Deposit funds from a coinbase account.

You can move funds between your Coinbase accounts and your cbpro
trading accounts within your daily limits. Moving funds between
Coinbase and cbpro is instant and free.

See AuthenticatedClient.get_coinbase_accounts() to receive
information regarding your coinbase_accounts.

	Parameters

	
	amount (Decimal) – The amount to deposit.

	currency (str) – The type of currency.

	coinbase_account_id (str) – ID of the coinbase account.

	Returns

	
	Information about the deposit. Example::

	
	{

	“id”: “593533d2-ff31-46e0-b22e-ca754147a96a”,
“amount”: “10.00”,
“currency”: “BTC”,

}

	Return type

	dict

	
coinbase_withdraw(amount, currency, coinbase_account_id)

	Withdraw funds to a coinbase account.

You can move funds between your Coinbase accounts and your cbpro
trading accounts within your daily limits. Moving funds between
Coinbase and cbpro is instant and free.

See AuthenticatedClient.get_coinbase_accounts() to receive
information regarding your coinbase_accounts.

	Parameters

	
	amount (Decimal) – The amount to withdraw.

	currency (str) – The type of currency (eg. ‘BTC’)

	coinbase_account_id (str) – ID of the coinbase account.

	Returns

	
	Information about the deposit. Example::

	
	{

	“id”:”593533d2-ff31-46e0-b22e-ca754147a96a”,
“amount”:”10.00”,
“currency”: “BTC”,

}

	Return type

	dict

	
create_report(report_type, start_date, end_date, product_id=None, account_id=None, report_format='pdf', email=None)

	Create report of historic information about your account.

The report will be generated when resources are available. Report status
can be queried via get_report(report_id).

	Parameters

	
	report_type (str) – ‘fills’ or ‘account’

	start_date (str) – Starting date for the report in ISO 8601

	end_date (str) – Ending date for the report in ISO 8601

	product_id (Optional[str]) – ID of the product to generate a fills
report for. Required if account_type is ‘fills’

	account_id (Optional[str]) – ID of the account to generate an account
report for. Required if report_type is ‘account’.

	report_format (Optional[str]) – ‘pdf’ or ‘csv’. Default is ‘pdf’.

	email (Optional[str]) – Email address to send the report to.

	Returns

	
	Report details. Example::

	
	{

	“id”: “0428b97b-bec1-429e-a94c-59232926778d”,
“type”: “fills”,
“status”: “pending”,
“created_at”: “2015-01-06T10:34:47.000Z”,
“completed_at”: undefined,
“expires_at”: “2015-01-13T10:35:47.000Z”,
“file_url”: undefined,
“params”: {

”start_date”: “2014-11-01T00:00:00.000Z”,
“end_date”: “2014-11-30T23:59:59.000Z”

}

}

	Return type

	dict

	
crypto_withdraw(amount, currency, crypto_address)

	Withdraw funds to a crypto address.

	Parameters

	
	amount (Decimal) – The amount to withdraw

	currency (str) – The type of currency (eg. ‘BTC’)

	crypto_address (str) – Crypto address to withdraw to.

	Returns

	
	Withdraw details. Example::

	
	{

	“id”:”593533d2-ff31-46e0-b22e-ca754147a96a”,
“amount”:”10.00”,
“currency”: “BTC”,

}

	Return type

	dict

	
deposit(amount, currency, payment_method_id)

	Deposit funds from a payment method.

See AuthenticatedClient.get_payment_methods() to receive
information regarding payment methods.

	Parameters

	
	amount (Decmial) – The amount to deposit.

	currency (str) – The type of currency.

	payment_method_id (str) – ID of the payment method.

	Returns

	
	Information about the deposit. Example::

	
	{

	“id”: “593533d2-ff31-46e0-b22e-ca754147a96a”,
“amount”: “10.00”,
“currency”: “USD”,
“payout_at”: “2016-08-20T00:31:09Z”

}

	Return type

	dict

	
get_account(account_id)

	Get information for a single account.

Use this endpoint when you know the account_id.

	Parameters

	account_id (str) – Account id for account you want to get.

	Returns

	
	Account information. Example::

	
	{

	“id”: “a1b2c3d4”,
“balance”: “1.100”,
“holds”: “0.100”,
“available”: “1.00”,
“currency”: “USD”

}

	Return type

	dict

	
get_account_history(account_id, **kwargs)

	List account activity. Account activity either increases or
decreases your account balance.

Entry type indicates the reason for the account change.
* transfer: Funds moved to/from Coinbase to cbpro
* match: Funds moved as a result of a trade
* fee: Fee as a result of a trade
* rebate: Fee rebate as per our fee schedule

If an entry is the result of a trade (match, fee), the details
field will contain additional information about the trade.

	Parameters

	
	account_id (str) – Account id to get history of.

	kwargs (dict) – Additional HTTP request parameters.

	Returns

	
	History information for the account. Example::

	
	[

	
	{

	“id”: “100”,
“created_at”: “2014-11-07T08:19:27.028459Z”,
“amount”: “0.001”,
“balance”: “239.669”,
“type”: “fee”,
“details”: {

”order_id”: “d50ec984-77a8-460a-b958-66f114b0de9b”,
“trade_id”: “74”,
“product_id”: “BTC-USD”

}

},
{

…

}

]

	Return type

	list

	
get_account_holds(account_id, **kwargs)

	Get holds on an account.

This method returns a generator which may make multiple HTTP requests
while iterating through it.

Holds are placed on an account for active orders or
pending withdraw requests.

As an order is filled, the hold amount is updated. If an order
is canceled, any remaining hold is removed. For a withdraw, once
it is completed, the hold is removed.

The type field will indicate why the hold exists. The hold
type is ‘order’ for holds related to open orders and ‘transfer’
for holds related to a withdraw.

The ref field contains the id of the order or transfer which
created the hold.

	Parameters

	
	account_id (str) – Account id to get holds of.

	kwargs (dict) – Additional HTTP request parameters.

	Returns

	
	Hold information for the account. Example::

	
	[

	
	{

	“id”: “82dcd140-c3c7-4507-8de4-2c529cd1a28f”,
“account_id”: “e0b3f39a-183d-453e-b754-0c13e5bab0b3”,
“created_at”: “2014-11-06T10:34:47.123456Z”,
“updated_at”: “2014-11-06T10:40:47.123456Z”,
“amount”: “4.23”,
“type”: “order”,
“ref”: “0a205de4-dd35-4370-a285-fe8fc375a273”,

},
{
…
}

]

	Return type

	generator(list)

	
get_accounts()

	Get a list of trading all accounts.

When you place an order, the funds for the order are placed on
hold. They cannot be used for other orders or withdrawn. Funds
will remain on hold until the order is filled or canceled. The
funds on hold for each account will be specified.

	Returns

	
	Info about all accounts. Example::

	
	[

	
	{

	“id”: “71452118-efc7-4cc4-8780-a5e22d4baa53”,
“currency”: “BTC”,
“balance”: “0.0000000000000000”,
“available”: “0.0000000000000000”,
“hold”: “0.0000000000000000”,
“profile_id”: “75da88c5-05bf-4f54-bc85-5c775bd68254”

},
{

…

}

]

	Return type

	list

	Additional info included in response for margin accounts.

	
get_coinbase_accounts()

	Get a list of your coinbase accounts.

	Returns

	Coinbase account details.

	Return type

	list

	
get_fills(product_id=None, order_id=None, **kwargs)

	Get a list of recent fills.

As of 8/23/18 - Requests without either order_id or product_id
will be rejected

This method returns a generator which may make multiple HTTP requests
while iterating through it.

Fees are recorded in two stages. Immediately after the matching
engine completes a match, the fill is inserted into our
datastore. Once the fill is recorded, a settlement process will
settle the fill and credit both trading counterparties.

The ‘fee’ field indicates the fees charged for this fill.

The ‘liquidity’ field indicates if the fill was the result of a
liquidity provider or liquidity taker. M indicates Maker and T
indicates Taker.

	Parameters

	
	product_id (str) – Limit list to this product_id

	order_id (str) – Limit list to this order_id

	kwargs (dict) – Additional HTTP request parameters.

	Returns

	
	Containing information on fills. Example::

	
	[

	
	{

	“trade_id”: 74,
“product_id”: “BTC-USD”,
“price”: “10.00”,
“size”: “0.01”,
“order_id”: “d50ec984-77a8-460a-b958-66f114b0de9b”,
“created_at”: “2014-11-07T22:19:28.578544Z”,
“liquidity”: “T”,
“fee”: “0.00025”,
“settled”: true,
“side”: “buy”

},
{

…

}

]

	Return type

	list

	
get_fundings(status=None, **kwargs)

	Every order placed with a margin profile that draws funding
will create a funding record.

This method returns a generator which may make multiple HTTP requests
while iterating through it.

	Parameters

	
	status (list/str) – Limit funding records to these statuses.
** Options: ‘outstanding’, ‘settled’, ‘rejected’

	kwargs (dict) – Additional HTTP request parameters.

	Returns

	
	Containing information on margin funding. Example::

	
	[

	
	{

	“id”: “b93d26cd-7193-4c8d-bfcc-446b2fe18f71”,
“order_id”: “b93d26cd-7193-4c8d-bfcc-446b2fe18f71”,
“profile_id”: “d881e5a6-58eb-47cd-b8e2-8d9f2e3ec6f6”,
“amount”: “1057.6519956381537500”,
“status”: “settled”,
“created_at”: “2017-03-17T23:46:16.663397Z”,
“currency”: “USD”,
“repaid_amount”: “1057.6519956381537500”,
“default_amount”: “0”,
“repaid_default”: false

},
{

…

}

]

	Return type

	list

	
get_order(order_id)

	Get a single order by order id.

If the order is canceled the response may have status code 404
if the order had no matches.

Caution: Open orders may change state between the request
and the response depending on market conditions.

	Parameters

	order_id (str) – The order to get information of.

	Returns

	
	Containing information on order. Example::

	
	{

	“created_at”: “2017-06-18T00:27:42.920136Z”,
“executed_value”: “0.0000000000000000”,
“fill_fees”: “0.0000000000000000”,
“filled_size”: “0.00000000”,
“id”: “9456f388-67a9-4316-bad1-330c5353804f”,
“post_only”: true,
“price”: “1.00000000”,
“product_id”: “BTC-USD”,
“settled”: false,
“side”: “buy”,
“size”: “1.00000000”,
“status”: “pending”,
“stp”: “dc”,
“time_in_force”: “GTC”,
“type”: “limit”

}

	Return type

	dict

	
get_orders(product_id=None, status=None, **kwargs)

	List your current open orders.

This method returns a generator which may make multiple HTTP requests
while iterating through it.

Only open or un-settled orders are returned. As soon as an
order is no longer open and settled, it will no longer appear
in the default request.

Orders which are no longer resting on the order book, will be
marked with the ‘done’ status. There is a small window between
an order being ‘done’ and ‘settled’. An order is ‘settled’ when
all of the fills have settled and the remaining holds (if any)
have been removed.

For high-volume trading it is strongly recommended that you
maintain your own list of open orders and use one of the
streaming market data feeds to keep it updated. You should poll
the open orders endpoint once when you start trading to obtain
the current state of any open orders.

	Parameters

	
	product_id (Optional[str]) – Only list orders for this
product

	status (Optional[list/str]) – Limit list of orders to
this status or statuses. Passing ‘all’ returns orders
of all statuses.
** Options: ‘open’, ‘pending’, ‘active’, ‘done’,

’settled’

** default: [‘open’, ‘pending’, ‘active’]

	Returns

	
	Containing information on orders. Example::

	
	[

	
	{

	“id”: “d0c5340b-6d6c-49d9-b567-48c4bfca13d2”,
“price”: “0.10000000”,
“size”: “0.01000000”,
“product_id”: “BTC-USD”,
“side”: “buy”,
“stp”: “dc”,
“type”: “limit”,
“time_in_force”: “GTC”,
“post_only”: false,
“created_at”: “2016-12-08T20:02:28.53864Z”,
“fill_fees”: “0.0000000000000000”,
“filled_size”: “0.00000000”,
“executed_value”: “0.0000000000000000”,
“status”: “open”,
“settled”: false

},
{

…

}

]

	Return type

	list

	
get_payment_methods()

	Get a list of your payment methods.

	Returns

	Payment method details.

	Return type

	list

	
get_position()

	Get An overview of your margin profile.

	Returns

	Details about funding, accounts, and margin call.

	Return type

	dict

	
get_report(report_id)

	Get report status.

Use to query a specific report once it has been requested.

	Parameters

	report_id (str) – Report ID

	Returns

	Report details, including file url once it is created.

	Return type

	dict

	
get_trailing_volume()

	Get your 30-day trailing volume for all products.

This is a cached value that’s calculated every day at midnight UTC.

	Returns

	
	30-day trailing volumes. Example::

	
	[

	
	{

	“product_id”: “BTC-USD”,
“exchange_volume”: “11800.00000000”,
“volume”: “100.00000000”,
“recorded_at”: “1973-11-29T00:05:01.123456Z”

},
{

…

}

]

	Return type

	list

	
margin_transfer(margin_profile_id, transfer_type, currency, amount)

	Transfer funds between your standard profile and a margin profile.

	Parameters

	
	margin_profile_id (str) – Margin profile ID to withdraw or deposit
from.

	transfer_type (str) – ‘deposit’ or ‘withdraw’

	currency (str) – Currency to transfer (eg. ‘USD’)

	amount (Decimal) – Amount to transfer

	Returns

	
	Transfer details. Example::

	
	{

	“created_at”: “2017-01-25T19:06:23.415126Z”,
“id”: “80bc6b74-8b1f-4c60-a089-c61f9810d4ab”,
“user_id”: “521c20b3d4ab09621f000011”,
“profile_id”: “cda95996-ac59-45a3-a42e-30daeb061867”,
“margin_profile_id”: “45fa9e3b-00ba-4631-b907-8a98cbdf21be”,
“type”: “deposit”,
“amount”: “2”,
“currency”: “USD”,
“account_id”: “23035fc7-0707-4b59-b0d2-95d0c035f8f5”,
“margin_account_id”: “e1d9862c-a259-4e83-96cd-376352a9d24d”,
“margin_product_id”: “BTC-USD”,
“status”: “completed”,
“nonce”: 25

}

	Return type

	dict

	
place_limit_order(product_id, side, price, size, client_oid=None, stp=None, time_in_force=None, cancel_after=None, post_only=None, overdraft_enabled=None, funding_amount=None)

	Place a limit order.

	Parameters

	
	product_id (str) – Product to order (eg. ‘BTC-USD’)

	side (str) – Order side (‘buy’ or ‘sell)

	price (Decimal) – Price per cryptocurrency

	size (Decimal) – Amount of cryptocurrency to buy or sell

	client_oid (Optional[str]) – User-specified Order ID

	stp (Optional[str]) – Self-trade prevention flag. See place_order
for details.

	time_in_force (Optional[str]) – Time in force. Options:
‘GTC’ Good till canceled
‘GTT’ Good till time (set by cancel_after)
‘IOC’ Immediate or cancel
‘FOK’ Fill or kill

	cancel_after (Optional[str]) – Cancel after this period for ‘GTT’
orders. Options are ‘min’, ‘hour’, or ‘day’.

	post_only (Optional[bool]) – Indicates that the order should only
make liquidity. If any part of the order results in taking
liquidity, the order will be rejected and no part of it will
execute.

	overdraft_enabled (Optional[bool]) – If true funding above and
beyond the account balance will be provided by margin, as
necessary.

	funding_amount (Optional[Decimal]) – Amount of margin funding to be
provided for the order. Mutually exclusive with
overdraft_enabled.

	Returns

	Order details. See place_order for example.

	Return type

	dict

	
place_market_order(product_id, side, size=None, funds=None, client_oid=None, stp=None, overdraft_enabled=None, funding_amount=None)

	Place market order.

	Parameters

	
	product_id (str) – Product to order (eg. ‘BTC-USD’)

	side (str) – Order side (‘buy’ or ‘sell)

	size (Optional[Decimal]) – Desired amount in crypto. Specify this or
funds.

	funds (Optional[Decimal]) – Desired amount of quote currency to use.
Specify this or size.

	client_oid (Optional[str]) – User-specified Order ID

	stp (Optional[str]) – Self-trade prevention flag. See place_order
for details.

	overdraft_enabled (Optional[bool]) – If true funding above and
beyond the account balance will be provided by margin, as
necessary.

	funding_amount (Optional[Decimal]) – Amount of margin funding to be
provided for the order. Mutually exclusive with
overdraft_enabled.

	Returns

	Order details. See place_order for example.

	Return type

	dict

	
place_order(product_id, side, order_type, **kwargs)

	Place an order.

The three order types (limit, market, and stop) can be placed using this
method. Specific methods are provided for each order type, but if a
more generic interface is desired this method is available.

	Parameters

	
	product_id (str) – Product to order (eg. ‘BTC-USD’)

	side (str) – Order side (‘buy’ or ‘sell)

	order_type (str) – Order type (‘limit’, ‘market’, or ‘stop’)

	**client_oid (str) – Order ID selected by you to identify your order.
This should be a UUID, which will be broadcast in the public
feed for received messages.

	**stp (str) – Self-trade prevention flag. cbpro doesn’t allow self-
trading. This behavior can be modified with this flag.
Options:
‘dc’ Decrease and Cancel (default)
‘co’ Cancel oldest
‘cn’ Cancel newest
‘cb’ Cancel both

	**overdraft_enabled (Optional[bool]) – If true funding above and
beyond the account balance will be provided by margin, as
necessary.

	**funding_amount (Optional[Decimal]) – Amount of margin funding to be
provided for the order. Mutually exclusive with
overdraft_enabled.

	**kwargs – Additional arguments can be specified for different order
types. See the limit/market/stop order methods for details.

	Returns

	
	Order details. Example::

	
	{

	“id”: “d0c5340b-6d6c-49d9-b567-48c4bfca13d2”,
“price”: “0.10000000”,
“size”: “0.01000000”,
“product_id”: “BTC-USD”,
“side”: “buy”,
“stp”: “dc”,
“type”: “limit”,
“time_in_force”: “GTC”,
“post_only”: false,
“created_at”: “2016-12-08T20:02:28.53864Z”,
“fill_fees”: “0.0000000000000000”,
“filled_size”: “0.00000000”,
“executed_value”: “0.0000000000000000”,
“status”: “pending”,
“settled”: false

}

	Return type

	dict

	
place_stop_order(product_id, side, price, size=None, funds=None, client_oid=None, stp=None, overdraft_enabled=None, funding_amount=None)

	Place stop order.

	Parameters

	
	product_id (str) – Product to order (eg. ‘BTC-USD’)

	side (str) – Order side (‘buy’ or ‘sell)

	price (Decimal) – Desired price at which the stop order triggers.

	size (Optional[Decimal]) – Desired amount in crypto. Specify this or
funds.

	funds (Optional[Decimal]) – Desired amount of quote currency to use.
Specify this or size.

	client_oid (Optional[str]) – User-specified Order ID

	stp (Optional[str]) – Self-trade prevention flag. See place_order
for details.

	overdraft_enabled (Optional[bool]) – If true funding above and
beyond the account balance will be provided by margin, as
necessary.

	funding_amount (Optional[Decimal]) – Amount of margin funding to be
provided for the order. Mutually exclusive with
overdraft_enabled.

	Returns

	Order details. See place_order for example.

	Return type

	dict

	
repay_funding(amount, currency)

	Repay funding. Repays the older funding records first.

	Parameters

	
	amount (int) – Amount of currency to repay

	currency (str) – The currency, example USD

	Returns

	Not specified by cbpro.

	
sell(product_id, order_type, **kwargs)

	Place a sell order.

This is included to maintain backwards compatibility with older versions
of cbpro-Python. For maximum support from docstrings and function
signatures see the order type-specific functions place_limit_order,
place_market_order, and place_stop_order.

	Parameters

	
	product_id (str) – Product to order (eg. ‘BTC-USD’)

	order_type (str) – Order type (‘limit’, ‘market’, or ‘stop’)

	**kwargs – Additional arguments can be specified for different order
types.

	Returns

	Order details. See place_order for example.

	Return type

	dict

	
withdraw(amount, currency, payment_method_id)

	Withdraw funds to a payment method.

See AuthenticatedClient.get_payment_methods() to receive
information regarding payment methods.

	Parameters

	
	amount (Decimal) – The amount to withdraw.

	currency (str) – Currency type (eg. ‘BTC’)

	payment_method_id (str) – ID of the payment method.

	Returns

	
	Withdraw details. Example::

	
	{

	“id”:”593533d2-ff31-46e0-b22e-ca754147a96a”,
“amount”: “10.00”,
“currency”: “USD”,
“payout_at”: “2016-08-20T00:31:09Z”

}

	Return type

	dict

3. Authentication

Contents

	Authentication

	Authentication

Authentication

	
class cbpro.cbpro_auth.CBProAuth(api_key, secret_key, passphrase)

	

4. Order Book

Contents

	Order Book

	Order Book

Order Book

5. Websocket Client

Contents

	Websocket Client

	Websocket Client

Websocket Client

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cbpro	

 	
 	
 cbpro.authenticated_client	

 	
 	
 cbpro.cbpro_auth	

 	
 	
 cbpro.order_book	

 	
 	
 cbpro.public_client	

 	
 	
 cbpro.websocket_client	

Index

 A
 | B
 | C
 | D
 | G
 | M
 | P
 | R
 | S
 | U
 | W

A

 	
 	auth (cbpro.authenticated_client.AuthenticatedClient attribute)

 	
 	AuthenticatedClient (class in cbpro.authenticated_client)

B

 	
 	buy() (cbpro.authenticated_client.AuthenticatedClient method)

C

 	
 	cancel_all() (cbpro.authenticated_client.AuthenticatedClient method)

 	cancel_order() (cbpro.authenticated_client.AuthenticatedClient method)

 	cbpro.authenticated_client (module)

 	cbpro.cbpro_auth (module)

 	cbpro.order_book (module)

 	cbpro.public_client (module)

 	
 	cbpro.websocket_client (module)

 	CBProAuth (class in cbpro.cbpro_auth)

 	close_position() (cbpro.authenticated_client.AuthenticatedClient method)

 	coinbase_deposit() (cbpro.authenticated_client.AuthenticatedClient method)

 	coinbase_withdraw() (cbpro.authenticated_client.AuthenticatedClient method)

 	create_report() (cbpro.authenticated_client.AuthenticatedClient method)

 	crypto_withdraw() (cbpro.authenticated_client.AuthenticatedClient method)

D

 	
 	deposit() (cbpro.authenticated_client.AuthenticatedClient method)

G

 	
 	get_account() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_account_history() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_account_holds() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_accounts() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_coinbase_accounts() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_currencies() (cbpro.public_client.PublicClient method)

 	get_fills() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_fundings() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_order() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_orders() (cbpro.authenticated_client.AuthenticatedClient method)

 	
 	get_payment_methods() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_position() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_product_24hr_stats() (cbpro.public_client.PublicClient method)

 	get_product_historic_rates() (cbpro.public_client.PublicClient method)

 	get_product_order_book() (cbpro.public_client.PublicClient method)

 	get_product_ticker() (cbpro.public_client.PublicClient method)

 	get_product_trades() (cbpro.public_client.PublicClient method)

 	get_products() (cbpro.public_client.PublicClient method)

 	get_report() (cbpro.authenticated_client.AuthenticatedClient method)

 	get_time() (cbpro.public_client.PublicClient method)

 	get_trailing_volume() (cbpro.authenticated_client.AuthenticatedClient method)

M

 	
 	margin_transfer() (cbpro.authenticated_client.AuthenticatedClient method)

P

 	
 	place_limit_order() (cbpro.authenticated_client.AuthenticatedClient method)

 	place_market_order() (cbpro.authenticated_client.AuthenticatedClient method)

 	
 	place_order() (cbpro.authenticated_client.AuthenticatedClient method)

 	place_stop_order() (cbpro.authenticated_client.AuthenticatedClient method)

 	PublicClient (class in cbpro.public_client)

R

 	
 	repay_funding() (cbpro.authenticated_client.AuthenticatedClient method)

S

 	
 	sell() (cbpro.authenticated_client.AuthenticatedClient method)

 	
 	session (cbpro.authenticated_client.AuthenticatedClient attribute)

U

 	
 	url (cbpro.authenticated_client.AuthenticatedClient attribute)

 	(cbpro.public_client.PublicClient attribute)

W

 	
 	withdraw() (cbpro.authenticated_client.AuthenticatedClient method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 cbpro2

 		
 Public Client

 		
 Authenticated Client

 		
 Authentication

 		
 Order Book

 		
 Websocket Client

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

